Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Elucidation of the methanogenic potential from coalbed microbial communities amended with volatile fatty acids.

The potential for modern coalfield methanogenesis was assessed using formation water from the Illinois Basin, Powder River Basin and Cook Inlet gas field as inocula for nutrient-replete incubations amended with C1-C5 fatty acids as presumed intermediates formed during anaerobic coal biodegradation. Instead of the expected rapid mineralization of these substrates, methanogenesis was inordinately slow (∼1 μmol day-1), following long lag periods (>100 days), and methane yields typically did not reach stoichiometrically expected levels. However, a gene microarray confirmed the potential for a wide variety of microbiological functions, including methanogenesis, at all sites. The Cook Inlet incubations produced methane at a relatively rapid rate when amended with butyrate (r = 0.98; p = 0.001) or valerate (r = 0.84; p = 0.04), a result that significantly correlated with the number of positive mcr gene sequence probes from the functional gene microarray and was consistent with the in situ detection of C4-C5 alkanoic acids. This finding highlighted the role of syntrophy for the biodegradation of the softer lignite and subbituminous coal in this formation, but methanogenesis from the harder subbituminous and bituminous coals in the other fields was less apparent. We conclude that coal methanogenesis is probably not limited by the inherent lack of metabolic potential, the presence of alternate electron acceptors or the lack of available nutrients, but more likely restricted by the inherent recalcitrance of the coal itself.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app