Add like
Add dislike
Add to saved papers

Enhanced methods to detect haplotypic effects on gene expression.

Bioinformatics 2017 August 2
Motivation: Expression quantitative trait loci (eQTLs), genetic variants associated with gene expression levels, are identified in eQTL mapping studies. Such studies typically test for an association between single nucleotide polymorphisms (SNPs) and expression under an additive model, which ignores interaction and haplotypic effects. Mismatches between the model tested and the underlying genetic architecture can lead to a loss of association power. Here we introduce a new haplotype-based test for eQTL studies that looks for haplotypic effects on expression levels. Our test is motivated by compound heterozygous architectures, a common disease model for recessive monogenic disorders, where two different alleles can have the same effect on a gene's function.

Results: When the underlying true causal architecture for a simulated gene is a compound heterozygote, our method is better able to capture the signal than the marginal SNP method. When the underlying model is a single SNP, there is no difference in the power of our method relative to the marginal SNP method. We apply our method to empirical gene expression data measured in 373 European individuals from the GEUVADIS study and find 29 more eGenes (genes with at least one association) than the standard marginal SNP method. Furthermore, in 974 of the 3529 total eGenes, our haplotype-based method results in a stronger association signal than the standard marginal SNP method. This demonstrates our method both increases power over the standard method and provides evidence of haplotypic architectures regulating gene expression.

Availability and Implementation: https://bogdan.bioinformatics.ucla.edu/software/.

Contact: [email protected] or [email protected].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app