Add like
Add dislike
Add to saved papers

Type 1 diabetes: Developing the first risk-estimation model for predicting silent myocardial ischemia. The potential role of insulin resistance.

OBJECTIVES: The aim of the study was to develop a novel risk estimation model for predicting silent myocardial ischemia (SMI) in patients with type 1 diabetes (T1DM) and no clinical cardiovascular disease, evaluating the potential role of insulin resistance in such a model. Additionally, the accuracy of this model was compared with currently available models for predicting clinical coronary artery disease (CAD) in general and diabetic populations.

RESEARCH, DESIGN AND METHODS: Patients with T1DM (35-65years, >10-year duration) and no clinical cardiovascular disease were consecutively evaluated for: 1) clinical and anthropometric data (including classical cardiovascular risk factors), 2) insulin sensitivity (estimate of glucose disposal rate (eGDR)), and 3) SMI diagnosed by stress myocardial perfusion gated SPECTs.

RESULTS: Eighty-four T1DM patients were evaluated [50.1±9.3 years, 50% men, 36.9% active smokers, T1DM duration: 19.0(15.9-27.5) years and eGDR 7.8(5.5-9.4)mg·kg-1·min-1]. Of these, ten were diagnosed with SMI (11.9%). Multivariate logistic regression models showed that only eGDR (OR = -0.593, p = 0.005) and active smoking (OR = 7.964, p = 0.018) were independently associated with SMI. The AUC of the ROC curve of this risk estimation model for predicting SMI was 0.833 (95%CI:0.692-0.974), higher than those obtained with the use of currently available models for predicting clinical CAD (Framingham Risk Equation: 0.833 vs. 0.688, p = 0.122; UKPDS Risk Engine (0.833 vs. 0.559; p = 0.001) and EDC equation: 0.833 vs. 0.558, p = 0.027).

CONCLUSION: This study provides the first ever reported risk-estimation model for predicting SMI in T1DM. The model only includes insulin resistance and active smoking as main predictors of SMI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app