Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effect of extracellular acidosis on the behaviour of mesenchymal stem cells in vitro.

The stem cell fraction of a cell population is finely tuned by stimuli from the external microenvironment. Among these stimuli, a decrease of extracellular pH (pHe) may occur in a variety of physiological and pathological conditions, including hypoxia and inflammation. In this study, by using bone marrow stem cells and dental pulp stem cells, we provided evidence that extracellular acidosis endows the maintenance of stemness in mesenchymal cells. Indeed, continuous exposure for 21 d to low pHe (6.5-6.8) conditions impaired the osteogenic differentiation of both cell types. Moreover, the exposure to low pHe, for 1 and up to 7 d, induced the expression of stemness-related genes and proteins, drove cells to reside in the quiescent G0 alert state and enhanced their ability to form floating spheres. The pre-conditioning with extracellular acidosis for 7 d did not affect the differentiation potential of dental pulp stem cells since, when the cells were cultured again at physiological pHe, their multilineage potential was almost unmodified. Our data provided evidence of the role of extracellular acidosis as a modulator of the stemness of mesenchymal cells. This condition is commonly found both in systemic and local bone conditions, hence underlining the relevance of this phenomenon for a better comprehension of bone healing and regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app