Add like
Add dislike
Add to saved papers

Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vaccination routes.

Toxoplasmosis caused by Toxoplasma gondii, an obligate intracellular protozoan, is a cause of congenital disease and abortion in humans and animals. Various vaccination strategies against toxoplasmosis in rodent models have been used in the past few decades; however, effective vaccines remain a challenge. A recombinant adenovirus vaccine expressing ubiquitin-conjugated multi-stage antigen segments (Ad-UMAS) derived from different life-cycle stages of T. gondii was constructed previously. Here, we compared the immune responses and protection effects in vaccination of mice with Ad-UMAS by five vaccination routes including intramuscular (i.m.), intravenous (i.v.), subcutaneous (s.c.), intraoral (i.o.), and intranasal (i.n.). Much higher levels of T. gondii-specific IgG and IgA antibodies were detected in the sera of the intraoral and intranasal vaccination groups on day 49 compared with controls (p < 0.05). The percentages of CD8+ T-cells in mice immunized intranasally and intraorally were larger than in mice immunized intramuscularly (p < 0.05). The highest level of IL-2 and IFN-γ was detected in the group with nasal immunization, and splenocyte proliferation activity was significantly enhanced in mice immunized via the oral and nasal routes. Furthermore, the higher survival rate (50%) and lower cyst numbers observed in the intraoral and intranasal groups all indicate that Ad-UMAS is far more effective in protecting mice against T. gondii infection via the mucosal route. Ad-UMAS could be an effective and safe mucosal candidate vaccine to protect animals and humans against T. gondii infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app