Add like
Add dislike
Add to saved papers

Sodium Nitroprusside Changed The Metabolism of Mesenchymal Stem Cells to An Anaerobic State while Viability and Proliferation Remained Intact.

Cell Journal 2017 April
OBJECTIVE: We used sodium nitroprusside (SNP), a nitric oxide (NO) releasing molecule, to understand its effect on viability and proliferation of rat bone marrow mesenchymal stem cells (BM-MSCs).

MATERIALS AND METHODS: This experimental study evaluated the viability and morphology of MSCs in the presence of SNP (100 to 2000 µM) at 1, 5, and 15 hours. We chose the 100, 1000, and 2000 µM concentrations of SNP for one hour exposure for further analyses. Cell proliferation was investigated by the colony forming assay and population doubling number (PDN). Na(+), K(+), and Ca(2+) levels as well as activities of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), aspartate transaminase (AST), and alanine transaminase (ALT) were measured.

RESULTS: The viability of MSCs dose-dependently reduced from 750 µM at one hour and 250 µM at 5 and 15 hours. The 100 µM caused no change in viability, however we observed a reduction in the cytoplasmic area at 5 and 15 hours. This change was not observed at one hour. The one hour treatment with 100 µM of SNP reduced the mean colony numbers but not the diameter when the cells were incubated for 7 and 14 days. In addition, one hour treatment with 100 µM of SNP significantly reduced ALT, AST, and ALP activities whereas the activity of LDH increased when incubated for 24 hours. The same treatment caused an increase in Ca(2+) and reduction in Na(+) content. The 1000 and 2000 µM concentrations reduced all the factors except Ca(2+) and LDH which increased.

CONCLUSION: The high dose of SNP, even for a short time, was toxic. The low dose was safe with respect to viability and proliferation, especially over a short time. However elevated LDH activity might increase anaerobic metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app