Add like
Add dislike
Add to saved papers

Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory.

Neuroepigenetics 2017 March
Recognition memory enables us to judge whether we have encountered a stimulus before and to recall associated information, including where the stimulus was encountered. The perirhinal cortex (PRh) is required for judgment of stimulus familiarity, while hippocampus (HPC) and medial prefrontal cortex (mPFC) are additionally involved when spatial information associated with a stimulus needs to be remembered. While gene expression is known to be essential for the consolidation of long-term recognition memory, the underlying regulatory mechanisms are not fully understood. Here we investigated the roles of two epigenetic mechanisms, DNA methylation and histone deacetylation, in recognition memory. Infusion of DNA methyltransferase inhibitors into PRh impaired performance in novel object recognition and object-in-place tasks while infusions into HPC or mPFC impaired object-in-place performance only. In contrast, inhibition of histone deacetylases in PRh, but not mPFC, enhanced recognition memory. These results support the emerging role of epigenetic processes in learning and memory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app