JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dishevelled stability is positively regulated by PKCζ-mediated phosphorylation induced by Wnt agonists.

Dishevelled (Dvl) proteins are central mediators of both canonical and non-canonical Wnt signaling. It is well known that, upon Wnt stimulation, Dvl becomes phosphorylated. However, how Wnt-induced phosphorylation of Dvl is regulated and its consequences are poorly understood. Here we found that Dvl proteins are overexpressed in colon cancer cells. In addition, we found that Wnt3a treatment rapidly induces hyperphosphorylation and stabilization of Dvl2 and Dvl3. The latter can be blocked by inhibition of Protein Kinase C (PKC)α, PKCδ, and PKCζ isoforms. We also found that Wnt3a-induced phosphorylation of Dvl3 by PKCζ is required to avoid Dvl3 degradation via proteasome. This demonstrated, to our knowledge for the first time, that hyperphosphorylation of Dvl by PKCζ results in Dvl stabilization. This is clear contrast with the consequences reported to date of CK1δ/ε-mediated Dvl phosphorylation upon Wnt treatment. Mapping the interaction domain between PKCζ and Dvl3 indicated that, although the Dvl-DIX domain is required to stabilize PKCζ-phosphorylated Dvl, it is not the region phosphorylated by this kinase. Our data show that the Dvl-DEP domain, required for specific interaction with PKCζ, is the site phosphorylated by this kinase, and also probably the Dvl-C terminus. Our findings suggest a model of positive regulation of PKCζ-mediated Dvl signaling activity, to produce a strong and sustained response to Wnt3a treatment by stabilizing Dvl protein levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app