Add like
Add dislike
Add to saved papers

Finding NeMO-Nerve-sparing Mid-urethral Obstruction: A Pathophysiologically Accurate Model of Rodent Partial Bladder Outlet Obstruction.

Urology 2017 July
OBJECTIVE: To develop and evaluate a novel technique modeling partial bladder outlet obstruction (pBOO) using a nerve-sparing mid-urethral obstruction (NeMO) approach.

MATERIALS AND METHODS: Female unoperated rats were compared to rats after NeMO, NeMO sham, proximal urethral (PU) obstruction, or PU sham. Residual volume, bladder capacity, voiding volume, and bladder mass were recorded; the contractile characteristics of isolated bladder strips were also analyzed. Additionally, we quantitated nerve fibers at the bladder neck as well as the extracellular matrix in the bladder wall.

RESULTS: NeMO yields a more predictable degree of obstruction vs PU, causes no animal mortality, and is easy to release. NeMO also results in a more moderate increase in bladder mass commensurate with human disease vs the exaggerated response to PU, and does not lead to the excessive bladder dilation observed after PU while showing increased residual urine and fibrosis over time, thus closely modeling human pBOO pathophysiology. Importantly, PU shams significantly incite both an undesirable mass increase as well as bladder dysfunction, correlating with a denervation injury making them unsuitable as controls when modeling a non-neurogenic pBOO. The bladder physiology and structure of NeMO-sham animals were indistinguishable from those of unoperated controls. The low complication rate and low variability of NeMO also can be applied to mice, opening the pBOO field to the full spectrum of transgenic manipulation.

CONCLUSION: NeMO is a pathophysiologically accurate modeling approach, with low variability and mortality, and newly paves the way for realistic and robust interpretation of omics and sequencing analytical methodologies. We therefore suggest NeMO as a new standard model when investigating pBOO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app