Add like
Add dislike
Add to saved papers

About the non-consistency of PTV-based prescription in lung.

Physica Medica : PM 2017 March 31
PURPOSE: The goal of this study is to show that the PTV concept is inconsistent for prescribing lung treatments when using type B algorithms, which take into account lateral electron transport. It is well known that type A dose calculation algorithms are not capable of calculating dose in lung correctly. Dose calculations should be based on type B algorithms. However, the combination of a type B algorithm with the PTV concept leads to prescription inconsistencies.

METHODS: A spherical isocentric setup has been simulated, using multiple realistic values for lung density, tumor density and collimator size. Different prescription methods are investigated using Dose-Volume-Histograms (DVH), Dose-Mass-Histograms (DMH), generalized Equivalent Uniform Dose (gEUD) and surrounding isodose percentage.

RESULTS: Isodose percentages on the PTV drop down to 50% for small tumors and low lung density. When applying the same PTV prescription to different patients with different lung characteristics, the effective mean dose to the GTV is very different, with factors up to 1.4. The most consistent prescription method seems to be the D50%(DMH) (PTV) DMH point, but is also limited to tumors with size over 1cm.

CONCLUSIONS: Even when using the different prescription methods, the prescription to the PTV is not consistent for type B-algorithm based dose calculations if clinical studies should produce coherent data. This combination leads to patients' GTV with low lung density possibly receiving very high dose compared to patients with higher lung density. The only solution seems to remove the classical PTV concept for type B dose calculations in lung.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app