JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Photorelease of microcystin-LR from resuspended sediments.

Harmful Algae 2017 March
A series of ten photolysis experiments was conducted with sediments exposed to Microcystis sp. blooms to determine if sunlight is capable of mobilizing the biotoxin microcystin-LR (MC-LR) into the water column. There was a net photorelease of MC-LR in irradiated suspensions in all cases relative to dark controls, ranging from 0.4 to 192μgL-1 g-1 into the dissolved phase. This should be viewed as a minimum estimate of photorelease due to concurrent photodegradation of dissolved toxin. Dissolved MC-LR concentrations in a sediment suspension increased linearly in the aqueous phase during a six-hour irradiation with simulated sunlight suggesting that longer exposure times produce greater quantities of MC-LR. There was a significant positive correlation between photorelease of toxin and percent organic carbon of the resuspended material, implying that organic-rich sediments yield the greatest photorelease of MC-LR upon exposure to full spectrum sunlight. Samples exposed to photosynthetically active radiation (400nm-700nm) were responsible for less than 2% of the photorelease compared to full spectrum exposures. Model calculations indicate that photochemical processing of bloom impacted sediments could be responsible for as much as 100% of the average standing stock of MC-LR in a freshwater pond located in southeastern North Carolina, where surface water concentrations were also measured. Mass spectrometric analysis revealed a new peak in light exposed flasks that appears to be a photo-induced isomerized product of MC-LR. Photoproduction from resuspended sediments therefore represents a significant but previously unrecognized source of highly toxic MC-LR and photoproducts of unknown toxicity and fate to aquatic ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app