Add like
Add dislike
Add to saved papers

Structural characterization of As-MIF and hJAB1 during the inhibition of cell-cycle regulation.

BMB Reports 2017 May
The biological activities of macrophage migration inhibitory factor (MIF) might be mediated through a classical receptormediated or non-classical endocytic pathway. JAB1 (C-Jun activation domain-binding protein-1) promotes the degradation of the tumor suppressor, p53, and the cyclin-dependent kinase inhibitor, p27. When MIF and JAB1 are bound to each other in various intracellular sites, MIF inhibits the positive regulatory effects of JAB1 on the activity of AP-1. The intestinal parasite, Anisakis simplex, has an immunomodulatory effect. The molecular mechanism of action of As-MIF and human JAB1 are poorly understood. In this study, As-MIF and hJAB1 were expressed and purified with high solubility. The structure of As-MIF and hJAB1 interaction was modeled by homology modeling based on the structure of Ace-MIF. This study provides evidence indicating that the MIF domain of As-MIF interacts directly with the MPN domain of hJAB1, and four structure-based mutants of As-MIF and hJAB1 disrupt the As-MIF-hJAB1 interaction. [BMB Reports 2017; 50(5): 269-274].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app