Add like
Add dislike
Add to saved papers

Physicochemical Evidence on Sublethal Neonicotinoid Imidacloprid Interacting with an Odorant-Binding Protein from the Tea Geometrid Moth, Ectropis obliqua.

Nowadays the excessive usage of neonicotinoid insecticides always results in residues in Chinese tea fields. It is not clear whether the insecticide residue at the sublethal level influences the physiological processes of tea pests. Here, we provide evidence of interaction between the neonicotinoid imidacloprid and a general odorant-binding protein, EoblGOBP2, from the tea geometrid moth, Ectropis obliqua. The interacting process was demonstrated through multiple fluorescence spectra, UV absorption spectra, circular dichroism (CD) spectra, molecular docking, etc. The binding mode was determined to be static (from 300 to 310 K) and dynamic quenching (from 290 to 300 K). The binding distance was calculated to be 6.9 nm on the basis of FRET theory. According to the thermodynamic analysis, the process was mainly driven by enthalpy (ΔH < 0), and hydrogen bond and van der Waals interactions were the main driving forces in the static and dynamic binding cases, respectively. Moreover, synchronous fluorescence spectra and CD spectra analysis showed stretching of the EoblGOBP2 peptide chains with a decreasing α-helix when imidacloprid was added. Molecular docking was applied and predicted that two hydrogen bonds were formed between imidacloprid and Arg110 in the mature peptide of EoblGOBP2. Moreover, when the absolute amounts of EoblGOBP2 in the moth antennae were measured and calculated by using real-time PCR, it was estimated that imidacloprid at sublethal level (about 0.233 and 0.175 ng/male and female moth antennae, respectively) inhibited the binding of a tea volatile, E-2-hexenal, to EoblGOBP2 at about half. This study indicates that neonicotinoid insecticide at sublethal level may still affect the olfactory cognition of the tea geometrid moth to volatile compounds from tea leaves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app