JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Simulative and Experimental Characterization of a pH-Dependent Clamp-like DNA Triple-Helix Nanoswitch.

Here we couple experimental and simulative techniques to characterize the structural/dynamical behavior of a pH-triggered switching mechanism based on the formation of a parallel DNA triple helix. Fluorescent data demonstrate the ability of this structure to reversibly switch between two states upon pH changes. Two accelerated, half microsecond, MD simulations of the system having protonated or unprotonated cytosines, mimicking the pH 5.0 and 8.0 conditions, highlight the importance of the Hoogsteen interactions in stabilizing the system, finely depicting the time-dependent disruption of the hydrogen bond network. Urea-unfolding experiments and MM/GBSA calculations converge in indicating a stabilization energy at pH 5.0, 2-fold higher than that observed at pH 8.0. These results validate the pH-controlled behavior of the designed structure and suggest that simulative approaches can be successfully coupled with experimental data to characterize responsive DNA-based nanodevices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app