Add like
Add dislike
Add to saved papers

Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media.

The effects of graphene oxide (GO) on the transport and deposition behaviors of colloids with different sizes in packed quartz sand were investigated in both NaCl (10 and 50 mM) and CaCl2 solutions (1 and 5 mM) at pH 6. Fluorescent carboxylate-modified polystyrene latex microspheres (CMLs) with size ranging from 0.2 to 2 μm were utilized as model colloids. Both breakthrough curves and retained profiles of colloids in the presence and absence of GO in suspensions under all examined solution conditions were analyzed. The breakthrough curves of all three different-sized CMLs with GO were higher yet the retained profiles were lower than those without GO at both examined ionic strengths in NaCl solutions. The observation showed that GO increased the transport and decreased the deposition of all three different-sized CMLs in NaCl solutions. However, in CaCl2 solutions, opposite observation was achieved at two different ionic strength conditions. Specifically, the presence of GO increased the transport and decreased the deposition of all three different-sized CMLs in 1 mM CaCl2 solutions, whereas, it decreased the transport and increased the deposition of all three different-sized CMLs in 5 mM CaCl2 solutions. Comparison the breakthrough curves and retained profiles of CMLs versus those of GO yielded that the overall transport and deposition behaviors of all three different-sized CMLs with GO copresent in suspensions agreed well with the transport and deposition behaviors of GO under all examined conditions. The transport and deposition behaviors of CMLs in packed porous media clearly were controlled by those of GO under the conditions investigated in present study due to the adsorption of CMLs onto GO surfaces. Our study showed that once released into natural environment, GO would adsorb (interact with) different types of colloids and thus have significant influence on the fate and transport of colloids in porous media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app