JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A DFT/B3LYP study of the mechanisms of the O 2 formation reaction catalyzed by the [(terpy)(H 2 O)Mn III (O) 2 Mn IV (OH 2 )(terpy)](NO 3 ) 3 complex: A paradigm for photosystem II.

We present a theoretical study of the reaction pathway for dioxygen molecular formation catalyzed by the [(terpy)(H2 O)MnIII (O)2 MnIV (OH2 ) (terpy)](NO3 )3 (terpy=2,2':6',2″-terpyridine) complex based on DFT-B3LYP calculations. In the initial state of the reaction, a partial oxido radical (0.44 spins) is formed ligated to Mn. This radical is involved in a nucleophylic attack by bulk water in the OO bond reaction formation step, in which the oxido fractional unpaired electron is delocalized toward the outermost Mn of the μ-oxo bridge, instead of the ligated Mn center. The reaction then follows with a series of proton-coupled electron transfer steps, in which the oxidation state, as well as the bond strength of the OO moiety increase, while the OOMn(1) bond gets weaker until O2 is released. In this model, basic acetate ions from the buffer solution capture protons in the proton-transfer steps. In each step there is reduction of the OOMn(1) binding strength, with concomitant increase of the OO bond strength, which culminates with the release of O2 in the last step. This last step is entropy driven, while formation of hydroperoxide and superoxide moieties is enthalpy driven. According with experiments, the rate-limiting step is the double oxidation of Mn(IV,III) or peroxymonosulfate binding, which occur prior to the OO bond formation step. This supports our findings that the barriers of all intermediate steps are below the experimental barrier of 19-21kcal/mol. The implications of these findings for understanding photosynthetic water-splitting catalysis are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app