Add like
Add dislike
Add to saved papers

Extracellular polymeric substances dependence of surface interactions of Bacillus subtilis with Cd 2+ and Pb 2+ : An investigation combined with surface plasmon resonance and infrared spectra.

Microbial extracellular polymeric substances (EPS) play an important role in resisting the shock load of toxic contaminants to microbial aggregates. In order to investigate the surface interaction process of bacteria with heavy metals, in this work, the kinetics and affinity of heavy metal (CdCl2 and PbCl2 ) binding on Bacillus subtilis with EPS and without EPS were determined using in situ surface plasmon resonance. The binding mechanism between bacteria (with EPS and without EPS) and heavy metals was probed using Fourier-transform infrared spectra. The effect of heavy metals on aggregations of microbial cells with EPS and without EPS was investigated. The results showed that both the binding of Pb2+ and Cd2+ to bacteria with EPS had a similar kinetics process, however Pb2+ bound to bacterial surface without EPS more firmly compared with Cd2+ . From our results we theorized that heavy metals changed the protein secondary structures of bacteria without EPS protection, that EPS reduced the influence of heavy metals on microbial aggregation, and that Pb2+ inhibited cell aggregation more easily compared with Cd2+ in the absence of EPS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app