Add like
Add dislike
Add to saved papers

Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals.

Biochars were produced from celery biomass by slow pyrolysis at 350 and 500°C, and featured by high content of alkaline minerals namely salts of alkali and alkaline earth metals. The biochars' efficiency on removing Pb(2+) from solution was investigated, and two biochars derived from celery stalk (StC350 and StC500) showed higher Pb(2+) sorption capacity (288 and 304mg/g) than most biochars reported previously. The sorption mechanisms involving precipitation, cation exchange and surface complexation are related to three biochar fractions namely water-soluble matter, acid-soluble substances and insoluble organic carbon. The relative contributions of water-soluble matter and acid-soluble substances to the total Pb(2+) removal were 59.8% and 36.6% for the StC350 biochar, and 62.8% and 34.9% for the StC500 biochar, respectively. The results indicate that biochars derived from vegetable wastes are potential candidates for efficient sorption of heavy metals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app