Add like
Add dislike
Add to saved papers

Ontogenetic dietary shifts and bioaccumulation of diphenhydramine in Mugil cephalus from an urban estuary.

Though bioaccumulation of pharmaceuticals has received attention in inland waters, studies of pharmaceutical bioaccumulation in estuarine and marine systems are limited. Further, an understanding of pharmaceutical bioaccumulation across size classes of organisms displaying ontogenetic feeding shifts is lacking. We selected the striped mullet, Mugil cephalus, a euryhaline and eurythermal species that experiences dietary shifts with age, to identify whether a model base, diphenhydramine, accumulated in a tidally influenced urban bayou. We further determined whether diphenhydramine accumulation differed among size classes of striped mullet over a two year study period. Stable isotope analysis identified that ontogenetic feeding shifts of M. cephalus occurred from juveniles to adults. However, bioaccumulation of diphenhydramine did not significantly increase across age classes of M. cephalus but corresponded to surface water levels of the pharmaceutical, which suggests inhalational uptake to diphenhydramine was more important for bioaccumulation than dietary exposure in this urban estuary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app