Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Are continuum predictions of clustering chaotic?

Chaos 2017 March
Gas-solid multiphase flows are prone to develop an instability known as clustering. Two-fluid models, which treat the particulate phase as a continuum, are known to reproduce the qualitative features of this instability, producing highly-dynamic, spatiotemporal patterns. However, it is unknown whether such simulations are truly aperiodic or a type of complex periodic behavior. By showing that the system possesses a sensitive dependence on initial conditions and a positive largest Lyapunov exponent, λ1 ≈1/τ, we provide a tentative answer: continuum predictions of clustering are chaotic. We further demonstrate that the chaotic behavior is dimensionally dependent, a conclusion which unifies previous results and strongly suggests that the chaotic behavior is not a direct consequence of the fundamental kinematic instability, but requires a secondary (inherently multidimensional) instability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app