Add like
Add dislike
Add to saved papers

Enhancing the colloidal stability of detonation synthesized diamond particles in aqueous solutions by adsorbing organic mono-, bi- and tridentate molecules.

Colloidal stability of nanoparticles with particle sizes smaller than 100nm is a critical issue for various research areas, including material science, electronics and biomedicine. We propose a facile, fast and cost-efficient method to increase the colloidal stability by simply adding organic molecules as ligands, which adsorb to the nanoparticle surface subsequently. Citric acid, oxalic acid, glutamic acid and propylamine were found to stabilize the nanodiamond (ND) particles with a mean diameter of approx. 30-100nm. The charge of the particles could be controlled by the pH of the dispersions and by stabilizing with carboxylic acids or amino acids mentioned above. ND particles stabilized with citric acid and oxalic acid at a pH higher than 2.5 were negatively charged, while ND dispersions stabilized with glutamic acid were charged positively below a pH of 3.2. Furthermore, the stability of the dispersion was found to be dependent on the concentration of the stabilizing agent and the pH of the dispersion. Finally, we proposed the stabilizing mechanism of ND particles with propylamine. Glutamic acid and propylamine stabilized ND dispersions can be utilized for high seeding densities on negatively charged surfaces due to the amino-groups, which can be helpful for adsorption processes in electronics and material science. Due to the high biocompatibility, non-cytotoxicity and chemical inertness of ND particles, carboxylic acids and amino acids stabilized ND particles are envisaged to be useful in the biomedical field, i.e. bio-labels, drug delivery vehicles, and effective enterosorbent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app