Add like
Add dislike
Add to saved papers

A simple stripping voltammetric method for the determination of a new anticancer prodrug in serum.

The determination of ethyl [4-oxo-8-(3-chlorophenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetate (ETTA), a new anticancer prodrug, using adsorptive stripping voltammetry (AdSV) was described for the first time. This method is based on adsorptive/reductive behaviour of ETTA at an in situ plated bismuth film electrode (BiFE) as a sensor. A number of experimental variables (e.g., a composition and pH of the supporting electrolyte, the conditions of bismuth film deposition, an accumulation potential and time, the scan rate, etc.) were thoroughly studied in order to achieve a high sensitivity. Experimental results under optimized conditions revealed an excellent linear correlation between the monitored voltammetric peak current and the ETTA concentration in the range of 2-50μgL-1 following an accumulation time of 300s. The limit of detection (LOD) for ETTA following 300s of an accumulation time was 0.4μgL-1 . The proposed facile, sensitive and inexpensive method was successfully applied to the determination of ETTA in serum. The investigated prodrug was extracted from serum using SPE method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app