Add like
Add dislike
Add to saved papers

Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics.

Six biocathodes catalyzing oxygen reduction were designed from the same environmental inoculum but using three different methods. Two were formed freely at open circuit potential, two using conventional aerobic polarization at -0.2V/SCE and two by reversion of already established acetate-fed bioanodes. Observation of the biofilms by SEM and epifluorescence microscopy revealed that reversible bioelectrodes had the densest biofilms. Electrochemical characterization revealed two different redox systems for oxygen reduction, at -0.30 and +0.23V/SCE. The biocathodes formed under aerobic polarization gave higher electrocalatytic performance for O2 reduction, due to production of the redox systems at +0.23V/SCE. Analyses of the bacterial communities on the biocathodes by 16S-rRNA pyrosequencing showed different selection (or enrichment) of microorganisms depending on the method used. This study highlights how the method chosen for designing oxygen biocathodes can affect the cathode coverage, the selection of bacterial populations and the electrochemical performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app