Add like
Add dislike
Add to saved papers

Effects of applying biosolids to soils on the adsorption and bioavailability of 17α-ethinylestradiol and triclosan in wheat plants.

Biosolids contain inorganic and organic contaminants, including pharmaceutical and personal care products (PPCPs) that have accounted for a series of emerging contaminants, such as triclosan (TCS) and the hormone 17α-ethinylestradiol (EE2). The general aim of this study was to evaluate the effects of biosolid application on EE2 and TCS adsorption and bioavailability in soils through testing with wheat plants. For the bioavailability study, sand and two soils, Lampa and Lo Prado, were used. The sand and soils were treated using two biosolid application rates (0 and 90 mg ha(-1)), and the EE2 and TCS concentrations in the biosolids were determined as 0.54 ± 0.06 and 8.31 ± 0.19 mg kg(-1), respectively. The concentration observed in wheat plants indicated that EE2 and TCS are mainly concentrated in the roots rather than in the shoots. Furthermore, the bioavailability of the compounds in plants depends on the properties of the contaminants and the soil. Adsorption studies showed that increasing the soil organic matter content increases the adsorption of TCS and EE2 on these substrates and that both compounds follow the Freundlich adsorption model. The desorption procedure indicated that availability for both TCS and EE2 depended on the soil type because TCS and EE2 were small in the Lampa soil with and without biosolid application and TCS increased by nearly 50% in the Lo Prado soil. The Lo Prado soil had an acidic pH (5.9) and the Lampa soil had a neutral pH of 7.3, and the organic carbon content was smaller.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app