Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports.

OBJECTIVE: Drug-drug interaction (DDI) is of serious concern, causing over 30% of all adverse drug reactions and resulting in significant morbidity and mortality. Early discovery of adverse DDI is critical to prevent patient harm. Spontaneous reporting systems have been a major resource for drug safety surveillance that routinely collects adverse event reports from patients and healthcare professionals. In this study, we present a novel approach to discover DDIs from the Food and Drug Administration's adverse event reporting system.

METHODS: Data-driven discovery of DDI is an extremely challenging task because higher-order associations require analysis of all combinations of drugs and adverse events and accurate estimate of the relationships between drug combinations and adverse event require cause-and-effect inference. To efficiently identify causal relationships, we introduce the causal concept into association rule mining by developing a method called Causal Association Rule Discovery (CARD). The properties of V-structures in Bayesian Networks are utilized in the search for causal associations. To demonstrate feasibility, CARD is compared to the traditional association rule mining (AR) method in DDI identification.

RESULTS: Based on physician evaluation of 100 randomly selected higher-order associations generated by CARD and AR, CARD is demonstrated to be more accurate in identifying known drug interactions compared to AR, 20% vs. 10% respectively. Moreover, CARD yielded a lower number of drug combinations that are unknown to interact, i.e., 50% for CARD and 79% for AR.

CONCLUSION: Evaluation analysis demonstrated that CARD is more likely to identify true causal drug variables and associations to adverse event.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app