Add like
Add dislike
Add to saved papers

Bayesian K-SVD Using Fast Variational Inference.

Recent work in signal processing in general and image processing in particular deals with sparse representation related problems. Two such problems are of paramount importance: an overriding need for designing a well-suited overcomplete dictionary containing a redundant set of atoms-i.e., basis signals-and how to find a sparse representation of a given signal with respect to the chosen dictionary. Dictionary learning techniques, among which we find the popular K-singular value decomposition algorithm, tackle these problems by adapting a dictionary to a set of training data. A common drawback of such techniques is the need for parameter-tuning. In order to overcome this limitation, we propose a fully-automated Bayesian method that considers the uncertainty of the estimates and produces a sparse representation of the data without prior information on the number of non-zeros in each representation vector. We follow a Bayesian approach that uses a three-tiered hierarchical prior to enforce sparsity on the representations and develop an efficient variational inference framework that reduces computational complexity. Furthermore, we describe a greedy approach that speeds up the whole process. Finally, we present experimental results that show superior performance on two different applications with real images: denoising and inpainting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app