Add like
Add dislike
Add to saved papers

Utilizing bifurcated halogen-bonding interactions with the uranyl oxo group in the assembly of a UO 2 -3-bromo-5-iodobenzoic acid coordination polymer.

The synthesis and crystal structure of a new uranyl coordination polymer featuring 3-bromo-5-iodobenzoic acid is described and the luminescent and vibrational properties of the material have been explored. Compound (1), [UO2 (C7 H3 BrIO2 )2 ]n , features dimeric uranyl units chelated and then linked by 3-bromo-5-iodobenzoic acid ligands to form a one-dimensional coordination polymer that is subsequently assembled via bifurcated halogen-bonding interactions with uranyl oxo atoms to form a supramolecular three-dimensional network. The asymmetric, bifurcated halogen-bonding interaction in (1) is notable as it represents the first observation of this synthon in a uranyl hybrid material. Raman and IR spectroscopy showed that halogen-bonding interactions with the uranyl oxo atoms result in small shifts in υ1 and υ3 frequencies, whereas luminescence spectra collected at an excitation wavelength of 420 nm reveal partially resolved uranyl emission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app