Add like
Add dislike
Add to saved papers

Interactions between cell wall polysaccharides and polyphenols.

In plant-based food systems such as fruits, vegetables, and cereals, cell wall polysaccharides and polyphenols co-exist and commonly interact during processing and digestion. The noncovalent interactions between cell wall polysaccharides and polyphenols may greatly influence the physicochemical and nutritional properties of foods. The affinity of cell wall polysaccharides with polyphenols depends on both endogenous and exogenous factors. The endogenous factors include the structures, compositions, and concentrations of both polysaccharides and polyphenols, and the exogenous factors are the environmental conditions such as pH, temperature, ionic strength, and the presence of other components (e.g., protein). Diverse methods used to directly characterize the interactions include NMR spectroscopy, size-exclusion chromatography, confocal microscopy, isothermal titration calorimetry, molecular dynamics simulation, and so on. The un-bound polyphenols are quantified by liquid chromatography or spectrophotometry after dialysis or centrifugation. The adsorption of polyphenols by polysaccharides is mostly driven by hydrophobic interactions and hydrogen bonding, and can be described by various isothermal models such as Langmuir and Freundlich equations. Quality attributes of various food and beverage products (e.g., wine) can be significantly affected by polysaccharide-polyphenol interactions. Nutritionally, the interactions play an important role in the digestive tract of humans for the metabolism of both polyphenols and polysaccharides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app