Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Receptor-guided 3D-QSAR studies, molecular dynamics simulation and free energy calculations of Btk kinase inhibitors.

BMC Systems Biology 2017 March 15
BACKGROUND: Bruton tyrosine kinase (Btk) plays an important role in B-cell development, differentiation, and signaling. It is also found be in involved in male immunodeficiency disease such as X-linked agammaglobulinemia (XLA). Btk is considered as a potential therapeutic target for treating autoimmune diseases and hematological malignancies.

RESULTS: In this work, a combined molecular modeling study was performed on a series of thieno [3,2-c] pyridine-4-amine derivatives as Btk inhibitors. Receptor-guided COMFA (q2  = 0.574, NOC = 3, r2  = 0.924) and COMSIA (q2  = 0.646, NOC = 6, r2  = 0.971) models were generated based on the docked conformation of the most active compound 26. All the developed models were tested for robustness using various validation techniques. Furthermore, a 5-ns molecular dynamics (MD) simulation and binding free energy calculations were carried out to determine the binding modes of the inhibitors and to identify crucial interacting residues. The rationality and stability of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM/PBSA method showed the importance of the van der Waals interaction.

CONCLUSIONS: A good correlation between the MD results, docking studies, and the contour map analysis were observed. The study has identified the key amino acid residues in Btk binding pocket. The results from this study can provide some insights into the development of potent, novel Btk inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app