Add like
Add dislike
Add to saved papers

Inhibition of Myeloperoxidase- and Neutrophil-Mediated Hypochlorous Acid Formation in Vitro and Endothelial Cell Injury by (-)-Epigallocatechin Gallate.

Myeloperoxidase (MPO) plays important roles in various diseases through its unique chlorinating activity to catalyze excess hypochlorous acid (HOCl) formation. Epidemiological studies indicate an inverse correlation between plant polyphenol consumption and the incidence of cardiovascular diseases. Here we showed that (-)-epigallocatechin gallate (EGCG), the main flavonoid present in green tea, dose-dependently inhibited MPO-mediated HOCl formation in vitro (chlorinating activities of MPO: 50.2 ± 5.7% for 20 μM EGCG versus 100 ± 5.6% for control, P < 0.01). UV-vis spectral and docking studies indicated that EGCG bound to the active site (heme) of MPO and resulted in the accumulation of compound II, which was unable to produce HOCl. This flavonoid also effectively inhibited HOCl generation in activated neutrophils (HOCl formation: 65.0 ± 5.6% for 20 μM EGCG versus 100 ± 6.2% for control, P < 0.01) without influencing MPO and Nox2 release and superoxide formation, suggesting that EGCG specifically inhibited MPO but not NADPH oxidase activity in activated neutrophils. Moreover, EGCG inhibited MPO (or neutrophil)-mediated HOCl formation in human umbilical vein endothelial cells (HUVEC) culture and accordingly protected HUVEC from MPO (or neutrophil)-induced injury (P < 0.05, all cases), although it did not induce cytotoxicity to HUVEC (P > 0.05, all cases). Our results indicate that dietary EGCG is an effective and specific inhibitor of MPO activity and may participate in the regulation of immune responses at inflammatory sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app