Add like
Add dislike
Add to saved papers

Ab initio calculation of the attempt frequency of oxygen diffusion in pure and samarium doped ceria.

The rate of oxygen ion jumps in a solid oxide depends not only on the activation energy but also on the pre-exponential factor of diffusion. In order to allow a fully ab initio prediction of the oxygen ion conductivity in pure and samarium doped ceria, we calculated the attempt frequency for an oxygen ion jump from first principles combining DFT+U, the NEB method, phonon calculations and the transition state theory. Different definitions of the jump attempt frequency are presented. The equivalence of the Eyring and the Vineyard method is shown without restriction to the Gamma point. Convergence checks of the phonon mesh reveal that the common reduction to the Gamma point is not sufficient to calculate the attempt frequency. Calculations of Sm doped ceria revealed an increase of the prefactor. The attempt frequency for the constant pressure case in quasi-harmonic approximation is larger than the attempt frequency at constant volume in harmonic approximation. The calculated electronic energies, enthalpies and entropies of migration are in agreement with the experimental diffusion coefficients and activation energies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app