Add like
Add dislike
Add to saved papers

Clinical dose effect and functional consequences of R92Q in two families presenting with a TRAPS/PFAPA-like phenotype.

BACKGROUND: TNF receptor-associated syndrome (TRAPS) is a dominantly inherited autoinflammatory condition caused by mutations in the TNFRSF1A gene. The mechanism underlying the variable expressivity of the common variant R92Q (rs4149584; c.362G>A; p.Arg121Gln) is unclear and is of critical importance for patient care and genetic counseling. This study evaluated the impact of the number of R92Q mutations in two unique unrelated families.

METHODS: Two patients with undefined but clear autoinflammatory symptoms were referred for genetic diagnosis. Blood samples were collected from the available family members to screen autoinflammatory genes and assess key steps of the TNFR1-mediated signaling pathway using flow cytometry and ex vivo culture.

RESULTS: R92Q homozygosity was demonstrated for the two probands. In family 1, the segregation analysis revealed TRAPS-like symptoms in all carriers, with a more severe presentation in the proband, whereas in family 2, the heterozygous parents were totally asymptomatic, suggesting recessive transmission. Functional studies revealed a nonclassical pathogenesis of TRAPS in the two probands and suggested a compensatory mechanism without clear dose effect.

CONCLUSION: We observed for the first time a possible clinical dose effect of R92Q. This work highlights the importance of familial studies to reconcile the contradictory reports published on the pathogenicity of this variant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app