Add like
Add dislike
Add to saved papers

Effects of TiO 2 crystal structure on the luminescence quenching of [Ru(bpy) 2 (dppz)] 2+ -intercalated into DNA.

The intercalation of [Ru(bpy)2 (dppz)]2+ labeled as Ru(II) (bpy=2,2'-bipyridine and dppz=dipyrido[3,2,-a:2',3'-c]phenazine) into herring sperm DNA leads to the formation of emissive Ru(II)-DNA dyads, which can be quenched by TiO2 nanoparticles (NPs) and sol-gel silica matrices at heterogeneous interfaces. The calcinations temperature exhibits a remarkable influence on the luminescence quenching of the Ru(II)-DNA dyads by TiO2 NPs. With increasing calcinations temperature in the range from 200 to 850°C, the anatase-to-rutile TiO2 crystal structure transformation increases the average particle size and hydrodynamic diameter of TiO2 and DNA@TiO2 . The anatase TiO2 has the stronger ability to unbind the Ru(II)-DNA dyads than the rutile TiO2 at room temperature. The TiO2 NPs and sol-gel silica matrices can quench the luminescence of the Ru(II) complex intercalated into DNA by selectively capturing the negatively DNA and positively charged Ru(II) complex to unbind the dyads, respectively. This present results provide new insights into the luminescence quenching and competitive binding of dye-labeled DNA dyads by inorganic NPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app