Add like
Add dislike
Add to saved papers

Negative dielectrophoresis spectroscopy for rare analyte quantification in biological samples.

We propose the use of negative dielectrophoresis (DEP) spectroscopy as a technique to improve the detection limit of rare analytes in biological samples. We observe a significant dependence of the negative DEP force on functionalized polystyrene beads at the edges of interdigitated electrodes with respect to the frequency of the electric field. We measured this velocity of repulsion for 0% and 0.8% conjugation of avidin with biotin functionalized polystyrene beads with our automated software through real-time image processing that monitors the Rayleigh scattering from the beads. A significant difference in the velocity of the beads was observed in the presence of as little as 80 molecules of avidin per biotin functionalized bead. This technology can be applied in the detection and quantification of rare analytes that can be useful in the diagnosis and the treatment of diseases, such as cancer and myocardial infarction, with the use of polystyrene beads functionalized with antibodies for the target biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app