Add like
Add dislike
Add to saved papers

GRASS: A Gradient-Based Random Sampling Scheme for Milano Retinex.

Retinex is an early and famous theory attempting to estimate the human color sensation derived from an observed scene. When applied to a digital image, the original implementation of retinex estimates the color sensation by modifying the pixels channel intensities with respect to a local reference white, selected from a set of random paths. The spatial search of the local reference white influences the final estimation. The recent algorithm energy-driven termite retinex (ETR), as well as its predecessor termite retinex, has introduced a new path-based image aware sampling scheme, where the paths depend on local visual properties of the input image. Precisely, the ETR paths transit over pixels with high gradient magnitude that have been proved to be important for the formation of color sensation. Such a sampling method enables the visit of image portions effectively relevant to the estimation of the color sensation, while it reduces the analysis of pixels with less essential and/or redundant data, i.e., the flat image regions. While the ETR sampling scheme is very efficacious in detecting image pixels salient for the color sensation, its computational complexity can be a limit. In this paper, we present a novel Gradient-based RAndom Sampling Scheme that inherits from ETR the image aware sampling principles, but has a lower computational complexity, while similar performance. Moreover, the new sampling scheme can be interpreted both as a path-based scanning and a 2D sampling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app