JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fast Nonlinear Ultrasound Propagation Simulation Using a Slowly Varying Envelope Approximation.

Medical systems usually consider linear propagation of ultrasound, an approximation of reality. However, numerous studies have attempted to accurately simulate the nonlinear pressure wave distortion and to evaluate the contribution of harmonic frequencies. In such simulations, the computation time is very large, except for the method based on the angular spectrum scheme where the derivative order is reduced using the Fourier transform. However, the harmonic computation is usually limited to the second harmonic because of quasi-linear approximation. In this paper, a slowly varying envelope approximation (SVEA) is used in the Fourier domain to compute the entire nonlinear distortion induced, including high harmonics and nonlinear mixing frequencies. The simulation by SVEA is evaluated by comparison with other simulation tools. The obtained deviation and difference remain low enough to fully validate such an approximation. Moreover, the simulator is implemented on a GPU to obtain a very fast tool, where the full nonlinear distorted [Formula: see text] field is computed in less than 10 s.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app