Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multi-Grained Random Fields for Mitosis Identification in Time-Lapse Phase Contrast Microscopy Image Sequences.

This paper proposes a multi-grained random fields (MGRFs) model for mitosis identification. To deal with the difficulty in hidden state discovery and sequential structure modeling in mitosis sequences only containing gradual visual pattern changes, we design the graphical structure to transform individual sequence into a set of coarse-to-fine grained sequencesconveying diverse temporal dynamics. Furthermore, we propose the corresponding probabilistic model for joint temporal learning and feature learning. To deal with the non-convex formulation of MGRF, we decomposemodel training into two sub-tasks, layer-wise sequential learning of both temporal dynamics and visual feature and new layer generation by graph-based sequential grouping, and optimize the model by alternating between them iteratively. The proposed method is validated on very challenging mitosis data set of C3H10T1/2 and C2C12 stem cells. Extensive comparison experiments demonstrate its superiority to the state of the arts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app