Add like
Add dislike
Add to saved papers

Excess maternal and postnatal thyroxine alters chondrocyte numbers and the composition of the extracellular matrix of growth cartilage in rats.

Purpose/Aim: The aim of this study was to evaluate the effects of excess maternal and postnatal thyroxine on chondrocytes and the extracellular matrix (ECM) of growth cartilage.

MATERIALS AND METHODS: We used 16 adult female Wistar rats divided into two groups: thyroxine treatment and control. From weaning to 40 days of age, offspring of the treated group (n = 8) received L-thyroxine. Plasma free T4 was measured. Histomorphometric analysis was performed on thyroids and femurs of all offspring. Alcian blue histochemical staining and real-time reverse transcription polymerase chain reaction measurements of gene expression levels of Sox9, Runx2, Aggrecan, Col I, Col II, Alkaline phosphatase, Mmp2, Mmp9, and Bmp2 were performed. Data were analyzed for statistical significance by student's t-test.

RESULTS: Excess maternal and postnatal thyroxine reduced the intensity of Alcian blue staining, altered the number of chondrocytes in proliferative and hypertrophic zones in growth cartilage, and reduced the gene expression of Sox9, Mmp2, Mmp9, Col II, and Bmp2 in the growth cartilage of all offspring. Additionally, excess thyroxine altered the gene expression of Runx2, Aggrecan and Col I, and this effect was dependent on age.

CONCLUSIONS: Excess thyroxine in neonates suppresses chondrocyte proliferation, stimulates chondrocyte hypertrophy and changes the ECM composition by reducing the amount of proteoglycans and glycosaminoglycans (GAGs). Prolonged exposure to excess thyroxine suppresses chondrocyte activity in general, with a severe reduction in the proteoglycan content of cartilage and the expression of gene transcripts essential for endochondral growth and characteristics of the chondrocyte phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app