JOURNAL ARTICLE
OBSERVATIONAL STUDY
Add like
Add dislike
Add to saved papers

Ejection time: influence of hemodynamics and site of measurement in the arterial tree.

The left ventricular ejection time is routinely measured from a peripheral arterial waveform. However, the arterial waveform undergoes constant transformation as the pulse wave propagates along the arterial tree. Our goal was to determine if the left ventricular ejection time measured peripherally in the arterial tree accurately reflected the ejection time measured through the aortic valve. Moreover, we examined/accessed the modulating influence of hemodynamics on ejection time measurements. Continuous wave Doppler waveform images through the aortic valve and the simultaneously obtained radial artery pressure waveforms were analyzed to determine central and peripheral ejection times, respectively. The peripheral ejection time was significantly longer than the simultaneously measured central ejection time (174.5±25.2 ms vs. 120.7±14.4 ms; P<0.0001; 17.4±8.7% increase). Moreover, the ejection time prolongation was accentuated at lower blood pressures, lower heart rate and lower pulse wave velocity. The time difference between centrally and peripherally measured ejection times likely reflects intrinsic vascular characteristics. Moreover, given that the ejection time also depends on blood pressure, heart rate and pulse wave velocity, peripherally measured ejection times might need to be adjusted to account for changes in these variables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app