Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Lipopeptide HIV-1/2 Fusion Inhibitor with Highly Potent In Vitro , Ex Vivo , and In Vivo Antiviral Activity.

Peptides derived from the C-terminal heptad repeat (CHR) region of the human immunodeficiency virus type 1 (HIV-1) fusogenic protein gp41 are potent viral entry inhibitors, and currently, enfuvirtide (T-20) is the only one approved for clinical use; however, emerging drug resistance largely limits its efficacy. In this study, we generated a novel lipopeptide inhibitor, named LP-19, by integrating multiple design strategies, including an N-terminal M-T hook structure, an HIV-2 sequence, intrahelical salt bridges, and a membrane-anchoring lipid tail. LP-19 showed stable binding affinity and highly potent, broad, and long-lasting antiviral activity. In in vitro studies, LP-19 efficiently inhibited HIV-1-, HIV-2-, and simian immunodeficiency virus (SIV)-mediated cell fusion, viral entry, and infection, and it was highly active against diverse subtypes of primary HIV-1 isolates and inhibitor-resistant mutants. Ex vivo studies demonstrated that LP-19 exhibited dramatically increased anti-HIV activity and an extended half-life in rhesus macaques. In short-term monotherapy, LP-19 reduced viral loads to undetectable levels in acutely and chronically simian-human immunodeficiency virus (SHIV)-infected monkeys. Therefore, this study offers an ideal HIV-1/2 fusion inhibitor for clinical development and emphasizes the importance of the viral fusion step as a drug target. IMPORTANCE The peptide drug T-20 is the only viral fusion inhibitor in the clinic, which is used for combination therapy of HIV-1 infection; however, it requires a high dosage and easily induces drug resistance, calling for a new drug with significantly improved pharmaceutical profiles. Here, we have developed a short-lipopeptide-based fusion inhibitor, termed LP-19, which mainly targets the conserved gp41 pocket site and shows highly potent inhibitory activity against HIV-1, HIV-2, and even SIV isolates. LP-19 exhibits dramatically increased antiviral activity and an extended half-life in rhesus macaques, and it has potent therapeutic efficacy in SHIV-infected monkeys, highlighting its high potential as a new viral fusion inhibitor for clinical use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app