Add like
Add dislike
Add to saved papers

Minute Virus of Canines NP1 Protein Governs the Expression of a Subset of Essential Nonstructural Proteins via Its Role in RNA Processing.

Journal of Virology 2017 June 16
Parvoviruses use a variety of means to control the expression of their compact genomes. The bocaparvovirus minute virus of canines (MVC) encodes a small, genus-specific protein, NP1, which governs access to the viral capsid gene via its role in alternative polyadenylation and alternative splicing of the single MVC pre-mRNA. In addition to NP1, MVC encodes five additional nonstructural proteins (NS) that share an initiation codon at the left end of the genome and which are individually encoded by alternative multiply spliced mRNAs. We found that three of these proteins were encoded by mRNAs that excise the NP1-regulated MVC intron immediately upstream of the internal polyadenylation site, (pA)p, and that generation of these proteins was thus regulated by NP1. Splicing of their progenitor mRNAs joined the amino termini of these proteins to the NP1 open reading frame, and splice site mutations that prevented their expression inhibited virus replication in a host cell-dependent manner. Thus, in addition to controlling capsid gene access, NP1 also controls the expression of three of the five identified NS proteins via its role in governing MVC pre-mRNA splicing. IMPORTANCE The Parvovirinae are small nonenveloped icosahedral viruses that are important pathogens in many animal species, including humans. Minute virus of canine (MVC) is an autonomous parvovirus in the genus Bocaparvovirus It has a single promoter that generates a single pre-mRNA. NP1, a small genus-specific MVC protein, participates in the processing of this pre-mRNA and so controls capsid gene access via its role in alternative internal polyadenylation and splicing. We show that NP1 also controls the expression of three of the five identified NS proteins via its role in governing MVC pre-mRNA splicing. These NS proteins together are required for virus replication in a host cell-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app