Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

A radical shift in perspective: mitochondria as regulators of reactive oxygen species.

Mitochondria are widely recognized as a source of reactive oxygen species (ROS) in animal cells, where it is assumed that over-production of ROS leads to an overwhelmed antioxidant system and oxidative stress. In this Commentary, we describe a more nuanced model of mitochondrial ROS metabolism, where integration of ROS production with consumption by the mitochondrial antioxidant pathways may lead to the regulation of ROS levels. Superoxide and hydrogen peroxide (H2 O2 ) are the main ROS formed by mitochondria. However, superoxide, a free radical, is converted to the non-radical, membrane-permeant H2 O2 ; consequently, ROS may readily cross cellular compartments. By combining measurements of production and consumption of H2 O2 , it can be shown that isolated mitochondria can intrinsically approach a steady-state concentration of H2 O2 in the medium. The central hypothesis here is that mitochondria regulate the concentration of H2 O2 to a value set by the balance between production and consumption. In this context, the consumers of ROS are not simply a passive safeguard against oxidative stress; instead, they control the established steady-state concentration of H2 O2 By considering the response of rat skeletal muscle mitochondria to high levels of ADP, we demonstrate that H2 O2 production by mitochondria is far more sensitive to changes in mitochondrial energetics than is H2 O2 consumption; this concept is further extended to evaluate how the muscle mitochondrial H2 O2 balance should respond to changes in aerobic work load. We conclude by considering how differences in the ROS consumption pathways may lead to important distinctions amongst tissues, along with briefly examining implications for differing levels of activity, temperature change and metabolic depression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app