Add like
Add dislike
Add to saved papers

Visualizing Localized Reentry With Ultra-High Density Mapping in Iatrogenic Atrial Tachycardia: Beware Pseudo-Reentry.

BACKGROUND: The activation pattern of localized reentry (LR) in atrial tachycardia remains incompletely understood. We used the ultra-high density Rhythmia mapping system to study activation patterns in LR.

METHODS AND RESULTS: LR was suggested by small rotatory activations (carousels) containing the full spectrum of the color-coded map. Twenty-three left-sided atrial tachycardias were mapped in 15 patients (age: 64±11 years). 16 253±9192 points were displayed per map, collected over 26±14 minutes. A total of 50 carousels were identified (median 2; quartiles 1-3 per map), although this represented LR in only n=7 out of 50 (14%): here, rotation occurred around a small area of scar (<0.03 mV; 12±6 mm diameter). In LR, electrograms along the carousel encompassed the full tachycardia cycle length, and surrounding activation moved away from the carousel in all directions. Ablating fractionated electrograms (117±18 ms; 44±13% of tachycardia cycle length) within the carousel interrupted the tachycardia in every LR case. All remaining carousels were pseudo-reentrant (n=43/50 [86%]) occurring in areas of wavefront collision (n=21; median 0.5; quartiles 0-2 per map) or as artifact because of annotation of noise or interpolation in areas of incomplete mapping (n=22; median 1, quartiles 0-2 per map). Pseudo-reentrant carousels were incorrectly ablated in 5 cases having been misinterpreted as LR.

CONCLUSIONS: The activation pattern of LR is of small stable rotational activations (carousels), and this drove 30% (7/23) of our postablation atrial tachycardias. However, this appearance is most often pseudo-reentrant and must be differentiated by interpretation of electrograms in the candidate circuit and activation in the wider surrounding region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app