Add like
Add dislike
Add to saved papers

Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection.

Fluorescence represents one of the most powerful tools for the detection and structural characterization of the pathogenic protein aggregates, amyloid fibrils. The traditional approaches to the identification and quantification of amyloid fibrils are based on monitoring the fluorescence changes of the benzothiazole dye thioflavin T (ThT) and absorbance changes of the azo dye Congo red (CR). In routine screening it is usually sufficient to perform only the ThT and CR assays, but both of them, when used separately, could give false results. Moreover, fibrillization kinetics can be measured only by ThT fluorescence, while the characteristic absorption spectra and birefringence of CR represent more rigid criteria for the presence of amyloid fibrils. Therefore, it seemed reasonable to use both these dyes simultaneously, combining the advantages of each technique. To this end, we undertook a detailed analysis of the fluorescence spectral behavior of these unique amyloid tracers upon their binding to amyloid fibrils from lysozyme, insulin and an N-terminal fragment of apolipoprotein A-I with Iowa mutation. The fluorescence measurements revealed several criteria for distinguishing between fibrillar and monomeric protein states: (i) a common drastic increase in ThT fluorescence intensity; (ii) a sharp decrease in ThT fluorescence upon addition of CR; (iii) an appearance of the maximum at 535-540 nm in the CR excitation spectra; (iv) increase in CR fluorescence intensity at 610 nm. Based on these findings we designed a novel combined ThT-CR fluorescence assay for amyloid identification. Such an approach not only strengthens the reliability of the ThT assay, but also provides new opportunities for structural characterization of amyloid fibrils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app