Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multi-Level Characterization of the Membrane Properties of Resveratrol-Incorporated Liposomes.

Resveratrol (RES) is a type of polyphenolic compound discovered from grapes and has gained prominence as a possible contributor to many disease treatments. Herein, three different types of liposomes were prepared as model cell membranes, and then the influence of the incorporation of RES on their membrane properties was evaluated by utilizing membrane-binding fluorescent probes. The binding of RES lead to the membrane polarities decreasing slightly, regardless of the phase states of the membrane, while the membrane fluidities decreased only in the case of liquid-disordered phase. In each model membrane system, the incorporation of RES dramatically dehydrated the membrane surface, which could prevent the permeation of water-soluble materials. Fluorescence quenching of Laurdan indicated less accessibility of hydroxyl radial into the inner region of the RES-incorporated membrane. The comparison between the mass spectra of oxidized DOPC molecules treated with hydroxyl radical revealed that the RES-incorporation into DOPC membranes can contribute to prevent lipid oxidation. It is concluded that the binding of RES to the lipid membrane can play a key role in affecting membrane properties and functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app