Journal Article
Review
Add like
Add dislike
Add to saved papers

Interaction of LRRK2 and α-Synuclein in Parkinson's Disease.

Parkinson's disease (PD) is a progressively debilitating neurodegenerative syndrome. It is best described as a movement disorder characterized by motor dysfunctions, progressive degeneration of dopaminergic neurons of the substantia nigra pars compacta, and abnormal intraneuronal protein aggregates, named Lewy bodies and Lewy neurites. Nevertheless, knowledge of the molecular events leading to this pathophysiology is incomplete. To date, only mutations in the α-synuclein and LRRK2-encoding genes have been associated with typical findings of clinical and pathologic PD. LRRK2 appears to have a central role in the pathogenesis of PD as it is associated with α-synuclein pathology and other proteins implicated in neurodegeneration. Thus, LRRK2 dysfunction may influence the accumulation of α-synuclein and its pathology through diverse pathomechanisms altering cellular functions and signaling pathways, including immune system, autophagy, vesicle trafficking, and retromer complex modulation. Consequently, development of novel LRRK2 inhibitors can be justified to treat the neurodegeneration associated with abnormal α-synuclein accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app