Add like
Add dislike
Add to saved papers

Facile construction of mitochondria-targeting nanoparticles for enhanced phototherapeutic effects.

Phototherapy, as a noninvasive therapeutic procedure, has been applied to treat tumors. However, the application of phototherapy is often compromised by its low efficiency. Herein, we developed a novel nanoplatform based on cationic amphiphilic polymer-wrapped carbon nanotubes (rPAA@SWCNTs) with a photosensitizer, indocyanine green (ICG), for phototherapy. The as-prepared nanoparticles exhibited excellent mitochondria targeting due to the synergistic properties of highly positive charges from the polycations on the corona and the high hydrophobicity from the carbon nanotubes in the core. Moreover, the high buffer capacity of the polycations facilitated the endosomal escape of nanoparticles via a proton-sponge effect. When irradiated with an 808 nm NIR laser, ICG/rPAA@SWCNTs could precisely damage mitochondria with high efficiency and produce reactive oxygen species (ROS) and hyperthermia, which further induced the ROS burst from damaged mitochondria. The overproduced ROS accumulated in mitochondria ultimately resulted in mitochondrial damage and cell death. Therefore ICG/rPAA@SWCNTs may be able to achieve an amplifying phototherapeutic effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app