Add like
Add dislike
Add to saved papers

Knockdown of IQGAP1 inhibits proliferation and epithelial-mesenchymal transition by Wnt/β-catenin pathway in thyroid cancer.

BACKGROUND: Thyroid cancer is the most common endocrine malignant disease with a high incidence rate. The expression of IQGAP1 is upregulated in various cancers, including thyroid cancer. However, the role and underlying mechanism of IQGAP1 in thyroid cancer are still not clear.

MATERIALS AND METHODS: The expression of IQGAP1 in thyroid cancer tissues and cells was determined by reverse transcription polymerase chain reaction and Western blot analysis. Cells were transfected with different siRNAs using Lipofectamine 2000 or were treated with various concentrations of XAV939. The effects of IQGAP1 knockdown on proliferation and epithelial-mesenchymal transition (EMT) of thyroid cancer cells were determined by MTT assay and Western blot analysis. Animal experiments were performed to investigate the effects of IQGAP1 knockdown on the growth of tumors in vivo.

RESULTS: High IQGAP1 expression is found in thyroid cancer tissues and cells. Knockdown of IQGAP1 had inhibitory effects on cell proliferation and EMT, as well as on the Wnt/β-catenin pathway. Additionally, inactivation of the Wnt/β-catenin pathway by XAV939 or si-β-catenin suppressed cell proliferation and EMT. Furthermore, suppression of the Wnt/β-catenin pathway reversed the positive effects of pcDNA-IQGAP1 on cell proliferation and EMT in vitro. Moreover, downregulation of IQGAP1 suppressed tumor growth and EMT in SW579 tumor xenografts through the Wnt/β-catenin pathway in vivo.

CONCLUSION: Our study demonstrated that knockdown of IQGAP1 inhibited cell proliferation and EMT through blocking the Wnt/β-catenin pathway in thyroid cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app