Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Discovery of a potent inhibitor of MELK that inhibits expression of the anti-apoptotic protein Mcl-1 and TNBC cell growth.

Despite recent advances in molecularly directed therapy, triple negative breast cancer (TNBC) remains one of the most aggressive forms of breast cancer, still without a suitable target for specific inhibitors. Maternal embryonic leucine zipper kinase (MELK) is highly expressed in TNBC, where level of overexpression correlates with poor prognosis and an aggressive disease course. Herein, we describe the discovery through targeted kinase inhibitor library screening, and structure-guided design of a series of ATP-competitive indolinone derivatives with subnanomolar inhibition constants towards MELK. The most potent compound, 17, inhibits the expression of the anti-apoptotic protein Mcl-1 and proliferation of TNBC cells exhibiting selectivity for cells expressing high levels of MELK. These studies suggest that further elaboration of 17 will furnish MELK-selective inhibitors with potential for development in preclinical models of TNBC and other cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app