Add like
Add dislike
Add to saved papers

Auditory steady state responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denoising.

Auditory steady state responses (ASSRs) in cochlear implant (CI) patients are contaminated by the spread of a continuous CI electrical stimulation artifact. The aim of this work was to model the electrophysiological mixture of the CI artifact and the corresponding evoked potentials on scalp electrodes in order to evaluate the performance of denoising algorithms in eliminating the CI artifact in a controlled environment. The basis of the proposed computational framework is a neural mass model representing the nodes of the auditory pathways. Six main contributors to auditory evoked potentials from the cochlear level and up to the auditory cortex were taken into consideration. The simulated dynamics were then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI artifact-response were then generated by solving the electromagnetic forward problem. As an application, the framework's simulated 32-channel datasets were used to compare the performance of 4 commonly used Independent Component Analysis (ICA) algorithms: infomax, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two major components were detectable in the simulated datasets, a low frequency component at the modulation frequency and a pulsatile high frequency component related to the stimulation frequency. The first can be attributed to the phase-locked ASSR and the second to the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising algorithms can induce undesirable deformation of the signal of interest in real CI patient recordings. The proposed framework is a valuable tool for evaluating these algorithms in a controllable environment ahead of experimental or clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app